8p4

8p4

8p4s³/16p4s³ = 8p4s³/8.2p4s³ = 1/​

Daftar Isi

1. 8p4s³/16p4s³ = 8p4s³/8.2p4s³ = 1/​


Answer:

lag Yan nyo po kase Ng questions para nalaman Kong Pano sagutan


2. what is the value of 8P4 ?


8 x 7 x 6 x 5= 1680
---------------------------
4 x 3 x 2 x 1= 24
P is the factorization but how many then divides it by the factorization of ho many numbers
= 70

3. what is the permutation of 8P4​


Answer:

8!/4! =1680

hope it helps

Answer:

1, 680

Step-by-step explanation:

nPr= n!/(n-r)

8P4=8!/(8-4)!

=8!/4!

final answer = 1, 680


4. Multiple Choice: Write the letter of the correct answer on the space provided. 1.Which of the following illustrates the different arrangement of the objects of a group?a.Selection b. differentiation c. permutation d. combination2.Which situation illustrates permutation?a.Forming committee of councilorsb.Choosing 2 literature books to buy from a variety of choicesc.Selecting 10 questions to answer out of 15 questions in a testd.Assigning rooms to conference participants3.In how many ways can 7 different flags be arranged in a row?a. 5,040 b. 6, 040 d. 7,040 d. 8,0404.How many ways can 6 people be seated at a round table such that they can sit anywhere?a. 100 b. 110 c. 120 d. 1305.A certain restaurant allows you to assemble your own vegetable salad. If there are 8 kinds of vegetables available, how many variations of the salad can you make containing at least 5 vegetables?a.56 b. 84 c. 93 d. 966.Calculate 12P4.40320 b. 11880 c. 990 d. 4957.How many different 3 – digit numbers can be formed from the digits 1, 3, 4, 6, 7, 9 if repetition is not allowed?a.840 b. 720 c. 360 d. 1208.If x = 7P4, y =8P4 and 9P3, arrange x, y and z from smallest to greatest.a.x, y, z b. z, x, y c. y, x, z d. x, z, y9.Calculate .a.420 b. 840 c. 1680 d. 252010.Which of the following is the number of distinguishable permutations of the letters of the word PASS.a.4 b. 12 c. 36 d. 14411.Which of the following is the selection of objects from a set?a.Combination b. differentiation c. permutation d. distinction12.Which situation illustrates permutation?a. Forming committee of councillorsb. arranging books on the shelfc. Arranging letters on the word COMMITTEEd. Counting the number of arrangement of people in a round table13.Which of the following is the value of 2P2 + 2C2?a.1 b. 2 c. 3 d. 414.Which of the following is the value of 3P2 – 3C2?a.1 b. 2 c. 3 d. 415.Which of the following is the value of 5p3+3C2? a.54 b.55 c.56 d.57If nC5 = 252, which of the following is the value of n?a.7 b. 8 c. 9 d. 1016.In how many ways can 7 potted plants be arranged in a row?a.5040 b. 2520 c. 720 d. 21017.If nCr = 35, which of the following are possible values of n and r?a.n = 6, r = 4 b. n=7, r=3 c. n=8, r =3 d. n=9, r=218.If nC4 = 126, which of the following is the value of n?a.11 b. 10 c. 9 d. 719.If 12Cr = 792, which of the following is a possible value of r?a.8 b.7 c.6 d.4​


Answer:

1. C

2. A

3. A

4. B

5. C

6. D

7. B

8. A

9. C

10. D

11. D

12. A

13. B

14. C

15. A

16. B

17. D

18. A

19. B

which of the following is the value of n?

a.7 b. 8 c. 9 d. 10


5. 1. 6!2. 2!3!3. 5!/3!4. 4P45. 8P4​


Answer:

Um ano po toh

math po ba toh

Answer:

by 7 Kasi

Step-by-step explanation:

wag ako tatanggihan huh


6. brainlees kitaDirection: Read each item carefully and choose the letter of the correct answer write it on the space provided before each number.1. What is the Greatest Common Factor (GCF) of 18 and 277 A. 3 B. 6C. 9 D. 272. What is the GCF of m3n5p2 and mn2p6? A. mn2p2B. m3n5p6C.mnpD. m2n2p23. What are the complete factors of the polynomial 4x - 12?A. 4(x + 3) 8.4(x-3) C 4(3 -x) D. 4(3 + x) 4. Give the complete factors of 2m2-8n2 A. 2(m2 - 4n2) B.2(m-n)(n-n)C. 2(m + n)(m + n) D. 2(m+ n)( m-n) 5. If one of the factors of the difference of two squares is p + 7, what is the other factor? A p2 - 49B. p2 +49 C. P-7 D. p + 7 6. Which of the following polynomials has factors (2h +11) (2h - 11)?A. 2h2 - 121 B. 4h2-121C. 2h + 121 D. 4h + 121 7. The following expressions are perfect cubes EXCEPT one. What is it? A. 27w3B. 64m6n3C. 8p4D. 125x98. Warren was asked to square (5x - 7), he answered 25x? - 49. Is his answer correct? A. Yes, because product rule is correctly applied.B. Yes, because squaring a binominal always produces a binomial product.C. No, because the answer must be 25×2 +49.D. No, because squaring a binomial always produces a trinomial product.9. What is the result when you square a binomial?A. binomial B. perfect square trinomial C. difference of two squares D. sum of two square 10. which of the following is a perfect square trinomial? A. x2 - 6x + 36 B. 9m2 + 12mn-4n2C. 4t2 - 4t + 1D. -7 and 411. what are the two numbers whose sum is 3 and waste product is - 28A. 14 and -2 B. -14 and 2 C. 7 and -4 D. - 7 and 412. if one of the factor of x 2 -x -12 is x + 3, what is the other factor?A. ×-4B. ×-6C. ×+4D. ×+613. what is the complete factored form of x2 + 7x + 10?A. (×-2)(×-5)B. (×+1)(×+10)C. (×+2)(×+5)D. (×-1)(×-10)14. the rectangle has area of 2 x2 + 8x + 8. if the length is represented by 2x + 4 find the binomial that represent the width and the rectangle?A. x + 2 B. ×-2C. -×-2D. -×+215 the product of two consecutive integers is 90. find the integers.A. -5 and -4 or 4 and 5B. -13 and 12 or 12 and 13C. -10 and -9 or 9 and 10D. -18 and -17 or 17 and 18​


Answer:

1b

2c

3d

4a

5b

6c

7a

8d

9d

10a

11c

12b

13a

14c

15d

Answer:

1.C

2.C

3.B

4.A

5.C

6.D

7.D

8.A

9.D

10.A

11.C

12.C

13.A

14.A

15.C

Step-by-step explanation:

hope it helped


7. Find the number of 8P4


Step-by-step explanation:

NPr = n! / (n-r)!

8P4 = 8! / (8-4)!

= 8! / 4!

= 1,680


8. factorial and permutation simplify:8P4+9P2+10P5*​


Answer:

Evaluate 8P4 P 4 8 using the formula nPr=n!(n −r)! P r n = n ! ( n - r ) ! . 8!(8−4)! 8 ! ( 8 - 4 ) ! Subtract 4 4 from 8 8 . 8!(4)! 8 ! ( 4 ) ! Simplify 8!

SANA MAKATULONG PO


9. .. Find the remainder of the following polynomialsDividend - DivisorRemainder1. (3x3 - 7x2 + 5x -2) (x + 2)2. (6a3 + 20a2 - 15a + 9) ÷ (a + 4)3. (n4-6n3 -10n2 + 20n +15) ÷ (n + 2)4. (p5+8p4 +2p2 +19p+16) ÷ (p + 8)5. (r5+6r4 -13r3 -5r2-8r +14) ÷ (r - 2)​advance thank you


Answer:

Weytt po bukas ko answeran. pramis

why its Math and the subject is Filipino i'am confuse❓


10. ACTIVITY 3: FIND MY EXACT VALUE. Evaluate the following permutations. 1. 8P4 2.5P4 3. 9P5 4. 7P5 4P2 5. 7P3 / 4P3​


✏️PERMUTATIONS

[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

[tex]\underline{\mathbb{PROBLEM:}}[/tex]

Evaluate the following permutations.

[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

[tex]\underline{\mathbb{ANSWERS:}}[/tex]

[tex]\qquad\Large\rm» \:\: 1. \: \green{_8P_4 = 1\text,680}[/tex]

[tex]\qquad\Large\rm» \:\: 2. \: \green{_5P_4 = 120}[/tex]

[tex]\qquad\Large\rm» \:\: 3. \: \green{_9P_5 = 15\text,120}[/tex]

[tex]\qquad\Large\rm» \:\: 4. \: \green{_7P_5 \: \cdot \: _4P_2 = 60,180}[/tex]

[tex]\qquad\Large» \:\: 5. \: \begin{gathered}\rm \green{\frac{_7P_3}{_4P_2} =\frac{35}{4}}\end{gathered} [/tex]

[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

[tex]\underline{\mathbb{SOLUTIONS:}}[/tex]

» Using the Permutation Formula to indicate the number of permutations.

[tex]\begin{aligned} & \bold{\color{lightblue}Formula:} \\ & \boxed{\: \rm _nP_r = \frac{n!}{(n-r)!} \:} \end{aligned} [/tex]

#1. [tex]\rm _8P_4[/tex]

[tex]\begin{aligned} \rm _8P_4 = \frac{8!}{(8 - 4)!} \end{aligned} [/tex]

[tex]\begin{aligned} \rm _8P_4 = \frac{8!}{4!} \end{aligned} [/tex]

[tex]\begin{aligned} \rm _8P_4 = \frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot \cancel{4!}}{ \cancel{4!}} \end{aligned} [/tex]

[tex]\rm _8P_4 = 8 \cdot 7 \cdot 6 \cdot 5[/tex]

[tex]\rm _8P_4 = 1\text,680[/tex]

[tex]\therefore[/tex] The number of permutation is 1680.

[tex]\rm[/tex]

#2. [tex]\rm _5P_4[/tex]

[tex]\begin{aligned} \rm _5P_4 = \frac{5!}{(5 - 4)!} \end{aligned} [/tex]

[tex]\begin{aligned} \rm _5P_4 = \frac{5!}{1!} \end{aligned} [/tex]

[tex]\rm _5P_4 = {5!}[/tex]

[tex]\rm _5P_4 =5 \cdot 4 \cdot 3 \cdot 2[/tex]

[tex]\rm _5P_4 = 120[/tex]

[tex]\therefore[/tex] The number of permutation is 120.

[tex]\rm[/tex]

#3. [tex]\rm _9P_5[/tex]

[tex]\begin{aligned} \rm _9P_5 = \frac{9!}{(9 - 5)!} \end{aligned} [/tex]

[tex]\begin{aligned} \rm _9P_5 = \frac{9!}{4!} \end{aligned} [/tex]

[tex]\begin{aligned} \rm _9P_5 = \frac{9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot \cancel{4!}}{ \cancel{4!}} \end{aligned} [/tex]

[tex] \rm _9P_5 = 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5[/tex]

[tex] \rm _9P_5 = 15\text,120[/tex]

[tex]\therefore[/tex] The number of permutation is 15,120.

[tex]\rm[/tex]

#4. [tex]\rm _7P_5 \: \cdot \: _4P_2 [/tex]

• [tex] \rm _7P_5 [/tex]

[tex]\begin{aligned} \rm _7P_5 = \frac{7!}{(7 - 5)!} \end{aligned} [/tex]

[tex]\begin{aligned} \rm _7P_5 = \frac{7!}{2!} \end{aligned} [/tex]

[tex]\begin{aligned} \rm _7P_5 = \frac{7 \cdot 6 \cdot 5 \cdot 5 \cdot 4 \cdot 3 \cdot \cancel{2!}}{ \cancel{2!}} \end{aligned} [/tex]

[tex]\rm _7P_5 = 7 \cdot 6 \cdot 5 \cdot 5 \cdot 4 \cdot 3 [/tex]

[tex]\rm _7P_5 = 5\text,040[/tex]

• [tex] \rm _4P_2 [/tex]

[tex]\begin{aligned} \rm _4P_2 = \frac{4!}{(4 - 2)!} \end{aligned} [/tex]

[tex]\begin{aligned} \rm _4P_2 = \frac{4!}{2!} \end{aligned} [/tex]

[tex]\begin{aligned} \rm _4P_2 = \frac{4 \cdot 3 \cdot \cancel{2!}}{ \cancel{2!}} \end{aligned} [/tex]

[tex]\rm _4P_2 = 4 \cdot 3[/tex]

[tex]\rm _4P_2 = 12[/tex]

» Find their product.

[tex] \qquad \implies\rm _7P_5 \: \cdot \: _4P_2[/tex]

[tex] \qquad \implies\rm 5\text,040 \: \cdot \: 12[/tex]

[tex] \qquad \implies\rm 60\text,480[/tex]

[tex]\therefore[/tex] The number of permutation is 60,480.

[tex]\rm[/tex]

#5. [tex]\rm \frac{_7P_3}{_4P_3} \\ [/tex]

• [tex] \rm _7P_3 [/tex]

[tex]\begin{aligned} \rm _7P_3 = \frac{7!}{(7 - 3)!} \end{aligned} [/tex]

[tex]\begin{aligned} \rm _7P_3 = \frac{7!}{4!} \end{aligned} [/tex]

[tex]\begin{aligned} \rm _7P_3 = \frac{7 \cdot 6 \cdot 5 \cdot \cancel{4!}}{ \cancel{4!}} \end{aligned} [/tex]

[tex]\rm _7P_3 = 7 \cdot 6 \cdot 5[/tex]

[tex]\rm _7P_3 = 210[/tex]

• [tex] \rm _4P_3 [/tex]

[tex]\begin{aligned} \rm _4P_3 = \frac{4!}{(4 - 3)!} \end{aligned} [/tex]

[tex]\begin{aligned} \rm _4P_3 = \frac{4!}{1!} \end{aligned} [/tex]

[tex] \rm _4P_3 = {4!}[/tex]

[tex] \rm _4P_3 = 4 \cdot 3 \cdot 2[/tex]

[tex] \rm _4P_3 = 24[/tex]

» Find their quotient.

[tex] \qquad \implies\rm \frac{_7P_3}{_4P_3} \\[/tex]

[tex] \qquad \implies\rm \frac{210}{24} \\[/tex]

[tex] \qquad \implies\rm \frac{35}{4} \\[/tex]

[tex]\therefore[/tex] The number of permutation is 35/4.

[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

#CarryOnLearning


11. Activity 3: Trace the path of the boy going to the other side of the swamp. The answer to each question below will give a clue to his path. 1. 6! 2. 2!3! 3. 5!3! 4. 4P4 5. 8P4 6. How many permutations are there in the letters of the word HOPEFUL?7. How many four-digit codes can be made out of the digits 0, 2, 4, 6, and 8 if repetition of digits is not allowed? 8. In how many ways can 4 distinct red cars and 4 distinct black cars be parked in a row of 6-car garage?​


Answer:

1. 6×5×4×3×2×1= 720

2. 2x3x1x2x1= 12

Step-by-step explanation:

yan lang po yung alam q..


Video Terkait

Kategori math